👾
Rootkid - Cyber Journal
Portfolio
  • 👩‍🚀Introduction
    • 🤖About Cyber Journal & Rootkid
    • 📜License Agreement
    • ⚠️Disclaimer
  • 📚Exam Prep Notes
    • 🗒️KLCP Exam (PEN-103) - Notes
      • 1. Linux Fundamentals
      • 2. Introduction
      • 3. About Kali Linux
      • 4. Getting Started with Kali Linux
      • 5. Installing Kali Linux
      • 6. Configuring Kali Linux
      • 7. Helping Yourself and Getting Help
      • 8. Securing and Monitoring Kali Linux
      • 9. Debian Package Management
      • 10. Advanced Usage
      • 11. Kali Linux in the Enterprise
      • 12. Introduction to Security Assessments
      • 13. Conclusion: The Road Ahead
    • 📒ISO/IEC 27001:2022 Lead Auditor - Notes
      • ISO - Training - Day - 1
      • ISO - Training - Day - 2
      • ISO - Training - Day - 3
      • ISO - Training - Day - 4
      • Practice Questions - Notes
      • Other PDF References
    • 📑Junior Penetration Tester (eJPTv2) - Notes
      • 💡Assessment Methodologies
        • 🔍Information Gathering
          • 🌏Passive Information Gathering
          • 🧐Active Information Gathering
        • 👣Footprinting & Scanning
          • 🗺️Mapping a Network
          • 🎛️Port Scanning
        • 🕵️Enumeration
          • 📜SMB Enumeration
          • 📂FTP Enumeration
          • 🐚SSH Enumeration
          • 🕸️HTTP Enumeration
          • 🗄️MySQL & MSSQL Enumeration
        • 🐛Vulnerability Assessment
          • 🩸Case Study: Heartbleed Vulnerability (CVE-2014-0160)
          • 🔵Case Study: EternalBlue Vulnerability (CVE-2017-0143)
          • 👨‍💻Case Study: Log4J Vulnerability (CVE-2021-44228)
      • 🧰Assessment Methodologies: Auditing Fundamentals
      • 📶Host & Network Penetration Testing
        • 💻System/Host Based Attacks
          • 🪟Overview Of Windows Vulnerabilities
          • 💣Exploiting Windows Vulnerabilities
            • 🧨Exploiting Microsoft IIS WebDAV
            • 🧨Exploiting WebDAV With Metasploit
            • 🧨Exploiting SMB With PsExec
            • 🧨Exploiting Windows MS17-010 SMB Vulnerability (EternalBlue)
            • 🧨Exploiting RDP - Brute Force
            • 🧨Exploiting Windows CVE-2019-0708 RDP Vulnerability (BlueKeep)
            • 🧨Exploiting WinRM
          • 📈Windows Privilege Escalation
            • 🔥Windows Kernel Exploits
            • 🔥Bypassing UAC With UACMe
            • 🔥Access Token Impersonation
          • 🗃️Windows File System Vulnerability - Alternate Data Streams
          • 💳Windows Credential Dumping
            • 🔑Searching For Passwords In Windows Configuration Files
            • 🔑Dumping Hashes With Mimikatz
            • 🔑Pass-The-Hash Attacks
          • 💎Linux Vulnerabilities
          • 🎰Exploiting Linux Vulnerabilities
            • 🐚Exploiting Bash CVE-2014-6271 Vulnerability (Shellshock)
            • 🗄️Exploiting FTP - Linux
            • 🔐Exploiting SSH - Linux
            • 📭Exploiting SAMBA - Linux
          • ‼️Linux Privilege Escalation
            • 💥Linux Kernel Exploits
            • 💥Exploiting Misconfigured Cron Jobs
            • 💥Exploiting SUID Binaries
          • 🔐Linux Credential Dumping
        • 📶Network-Based Attacks
          • 📦Tshark & Filtering Basics
          • 🕷️Arp Poisoning
        • 💣The Metasploit Framework (MSF)
        • 💥Exploitation
          • 🖲️Vulnerability Scanning
          • ⚠️Searching For Exploits
          • 🐚Bind & Reverse Shells
          • 👾Exploitation Frameworks
          • 🪟Windows Exploitation
          • 🥌Linux Exploitation
          • ☣️AV Evasion & Obfuscation
        • 🚩Post-Exploitation
          • 🌬️Windows Local Enumeration
          • 📟Linux Local Enumeration
          • 🚜Transferring Files To Windows & Linux Targets
          • 🔼Upgrading Shells
          • 👀Windows Privilege Escalation
          • ⚒️Linux Privilege Escalation
          • 🔮Windows Persistence
          • 🧙Linux Persistence
          • 〰️Dumping & Cracking Windows Hashes (NTLM Hashes)
          • 🍘Dumping & Cracking Linux Password Hashes
          • ➿Pivoting Overview
          • 🧹Clearing Your Tracks On Windows & Linux
        • 🧑‍🔬Social Engineering Fundamentals
      • 🕸️Web Application Penetration Testing
        • ℹ️Intro to Web
        • 🎯Directory Enumeration
        • 🧰BurpSuite and ZAP-Proxy Overview
        • 🛠️Nikto, SQLMap, XSSer & Hydra Overview
      • 👽Extra Resources
        • ➕CIDR Conversion Table
        • 📦Machines or Lab Solved to Practice
    • 📓Certified in Cybersecurity - (ISC)2 - Notes
      • 📝Chapter-1 Security Controls - Notes
      • 📝Chapter-2 Incident Response, Business Continuity & Disaster Recovery - Notes
      • 📝Chapter 3: Access Control Concepts - Notes
      • 📝Chapter 4: Network Security - Notes
      • 📝Chapter 5: Security Operations - Notes
    • 📕Certified Ethical Hacker v12 - Practical - Notes
      • 👣Module 02: Footprinting and Reconnaissance
      • 🔎Module 03: Enumeration
      • Module 04: Scanning Networks
      • Module 05: Vulnerability Analysis
      • 💻Module 06: System Hacking
      • 🐛Module 07: Malware Threats
      • 🧙Module 08: Sniffing
      • 🐧Module 09: Social Engineering
      • ⚠️Module 10: Denial-of-Service
      • 🪝Module 11: Session Hijacking
      • Module 12: Evading IDS, Firewalls, and Honeypots
      • 🗄️Module 13: Hacking Web Servers
      • Module 14: Hacking Web Applications
      • 💉Module 15: SQL Injection
      • Module 16: Hacking Wireless Networks
      • Module 17: Hacking Mobile Platforms
      • Module 18: IoT and OT Hacking
      • Module 19: Cloud Computing
      • Module 20: Cryptography
      • Extra Resources
        • 📚Helpful Resources
        • 📜Cheat Sheet
  • ✍️Blogs
    • Mastering the Art of Logic Flaws: Unraveling Cyber Mysteries !!!
    • How to write a Detailed Vulnerability Report
    • Payment Gateway Bypass on Government Domain.
Powered by GitBook
On this page
  • Overview of the Vulnerability:
  • Discovery:
  • Exploitation:
  • Root Cause:
  • Impact:
  • Mitigation and Response:
  • Lessons Learned:
  • Conclusion:

Was this helpful?

  1. Exam Prep Notes
  2. Junior Penetration Tester (eJPTv2) - Notes
  3. Assessment Methodologies
  4. Vulnerability Assessment

Case Study: Heartbleed Vulnerability (CVE-2014-0160)

Overview of the Vulnerability:

The Heartbleed vulnerability, tracked as CVE-2014-0160, was a critical security flaw in OpenSSL, an open-source cryptographic software library widely used to secure online communications. It allowed attackers to access sensitive data from the memory of the affected server without leaving any trace.

Discovery:

The vulnerability was discovered by security researchers at Codenomicon and Google Security in April 2014. It existed in the OpenSSL's implementation of the Heartbeat Extension, a feature that allowed the secure transmission of small amounts of data without constant reestablishment of a connection.

Exploitation:

  1. Setup: An attacker initiates a TLS handshake with a vulnerable server.

  2. Heartbeat Request: The attacker sends a maliciously crafted Heartbeat Request containing a small payload and a size value that doesn't match the actual payload size.

  3. Server Response: The server processes the request, copies the payload into its memory, and responds with the same payload to the attacker.

  4. Memory Leak: Due to the mismatch in size, the server leaks additional data from its memory beyond the payload, potentially exposing sensitive information like passwords, keys, and user data.

Root Cause:

The root cause of the Heartbleed vulnerability was a coding error in the OpenSSL implementation of the Heartbeat Extension. Specifically, the missing validation of payload size in the Heartbeat Request allowed attackers to trick the server into leaking memory contents.

Impact:

The Heartbleed vulnerability had severe implications for online security. Attackers could exploit it to obtain private keys, passwords, and other sensitive data from vulnerable servers. This could compromise user accounts, data privacy, and even enable attackers to impersonate legitimate websites.

Mitigation and Response:

  1. Patch: The OpenSSL project quickly released patched versions to address the vulnerability.

  2. Certificate Reissuance: Organizations were advised to reissue SSL/TLS certificates after patching to prevent misuse of compromised private keys.

  3. Password Changes: Users were encouraged to change passwords for affected services.

Lessons Learned:

The Heartbleed vulnerability highlighted the importance of thorough code review and proper validation in security-critical software. It also emphasized the need for prompt and transparent disclosure of vulnerabilities to the affected parties.

Conclusion:

Heartbleed was a critical vulnerability that exposed the risks of unchecked memory manipulation in cryptographic libraries. Its discovery led to widespread patching efforts and increased awareness about secure coding practices in open-source projects.




Hacker's Mantra:Security is always excessive until it’s not enough. - Robbie Sinclair

PreviousVulnerability AssessmentNextCase Study: EternalBlue Vulnerability (CVE-2017-0143)

Last updated 10 months ago

Was this helpful?

📚
📑
💡
🐛
🩸